Script Use of Lexicometry in Sensometrics

Figure 4 with the best represented global words in the first plane (cos2 higher than 0.5 in either of the two factors). Names and positions.

sel.12.BRGW <-which((res.mfact.23$freq.sup$cos2[,1]>0.5)|(res.mfact.23$freq.sup$cos2[,2] > 0.5))
sel.12.BRGW
  aspect    asséchant         beau         bois        boisé       carton    charpenté         cuit 
          12           13           17           18           19           24           29           36 
     curieux       dominé       étable        évent       évolué    évolution     farineux       finale 
          37           41           50           51           52           53           55           58 
   fraîcheur        fruit        fumée     généreux       humide       limite      matière          mou 
          63           65           67           69           75           81           85           88 
        neuf         noir     nonboisé  particulier         plat    réduction         rond          sec 
          91           94           95           98          102          112          115          117 
      souple       sucrée    sucrosité       toasté      vanillé          vin          alt         bota 
         119          121          122          126          131          135          142          148 
        cafè       cartró        cedre       cítric    claudolor          cos     especiat       floral 
         151          153          155          157          158          163          168          172 
    formatge     fruitsec          fum        fusta       gerani     glicerol        greix         iode 
         174          176          177          179          180          181          182          184 
    liniment malaqualitat     mantegós       marcat       neopre   regalèssia       secant        sutja 
         187          190          191          192          198          213          216          221 
        taní       torrat     vainilla     xocolata 
         222          225          227          230 

 

plot.MFA(res.mfact.23,choix=c("freq"),invisible=c("row","col"),axes=c(1,2),select=sel.12.BRGW,unselect=1,
legend=list(plot=FALSE),habillage="none",autoLab = c("yes"),cex=0.8,
title="",graph.type="classic")

Figure with the best represented global words in the plane (3,4) (cos2 higher than 0.5 in either of the two factors). Names and positions.

sel.34.BRGW<-which((res.mfact.23$freq.sup$cos2[,3]>0.5)|(res.mfact.23$freq.sup$cos2[,4] > 0.5) )
plot.MFA(res.mfact.23,choix=c("freq"),invisible=c("row","col"),axes=c(3,4),select=sel.34.BRGW,unselect=1,
legend=list(plot=FALSE),habillage="none",autoLab = c("yes"),cex=0.8,
title="The best represented global words",graph.type="classic")

38 characteristic French words for the plane (1,2)

sel.12.BRGW.Fr <-which((res.mfact.23$freq.sup$cos2[c(1:135),1]>0.5)|(res.mfact.23$freq.sup$cos2[c(1:135),2] > 0.5))
sel.12.BRGW.Fr
    aspect   asséchant        beau        bois       boisé      carton   charpenté        cuit     curieux 
         12          13          17          18          19          24          29          36          37 
     dominé      étable       évent      évolué   évolution    farineux      finale   fraîcheur       fruit 
         41          50          51          52          53          55          58          63          65 
      fumée    généreux      humide      limite     matière         mou        neuf        noir    nonboisé 
         67          69          75          81          85          88          91          94          95 
particulier        plat   réduction        rond         sec      souple      sucrée   sucrosité      toasté 
         98         102         112         115         117         119         121         122         126 
    vanillé         vin 
        131         135 
cat(length(sel.12.BRGW.Fr))
38
Words12.BRGW.Fr <- data.frame(posit=as.vector(sel.12.BRGW.Fr), wordF4=names(sel.12.BRGW.Fr), lang="Fr")
Words12.BRGW.Fr
   posit      wordF4 lang
1     12      aspect   Fr
2     13   asséchant   Fr
3     17        beau   Fr
4     18        bois   Fr
5     19       boisé   Fr
6     24      carton   Fr
7     29   charpenté   Fr
8     36        cuit   Fr
9     37     curieux   Fr
10    41      dominé   Fr
11    50      étable   Fr
12    51       évent   Fr
13    52      évolué   Fr
14    53   évolution   Fr
15    55    farineux   Fr
16    58      finale   Fr
17    63   fraîcheur   Fr
18    65       fruit   Fr
19    67       fumée   Fr
20    69    généreux   Fr
21    75      humide   Fr
22    81      limite   Fr
23    85     matière   Fr
24    88         mou   Fr
25    91        neuf   Fr
26    94        noir   Fr
27    95    nonboisé   Fr
28    98 particulier   Fr
29   102        plat   Fr
30   112   réduction   Fr
31   115        rond   Fr
32   117         sec   Fr
33   119      souple   Fr
34   121      sucrée   Fr
35   122   sucrosité   Fr
36   126      toasté   Fr
37   131     vanillé   Fr
38   135         vin   Fr

 

French translation

df.WTR.Fr <- data.frame(orig= "aspect", transl="aspect")
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "asséchant", transl="drying") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "beau", transl="beautiful") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "bois", transl="wood") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "boisé", transl="woody") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "carton", transl="cardboard") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "charpenté", transl="structured") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "cuit", transl="cooked") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "curieux", transl="curious") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "dominé", transl="dominated") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "étable", transl="stable") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "évent", transl="staleness") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "évolué", transl="evolved") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "évolution", transl="development") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "farineux", transl="floury") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "finale", transl="final") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "fraîcheur", transl="freshness") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "fruit", transl="fruit") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "fumée", transl="smoke") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "généreux", transl="generous") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "humide", transl="wet") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "limite", transl="limit") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "matière", transl="material") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "mou", transl="soft") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "neuf", transl="new") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "noir", transl="black") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "nonboisé", transl="unwooded") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "particulier", transl="particular") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "plat", transl="flat") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "réduction", transl="reduction") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "rond", transl="round") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "sec", transl="dry") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "souple", transl="supple") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "sucrée", transl="sweet") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "sucrosité", transl="sweetness") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "toasté", transl="toasted") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "vanillé", transl="vanillin") )
df.WTR.Fr <- rbind(df.WTR.Fr, data.frame(orig= "vin", transl="wine") )
dim(df.WTR.Fr)
38  2
df.WTR.Fr
          orig      transl
1       aspect      aspect
2    asséchant      drying
3         beau   beautiful
4         bois        wood
5        boisé       woody
6       carton   cardboard
7    charpenté  structured
8         cuit      cooked
9      curieux     curious
10      dominé   dominated
11      étable      stable
12       évent   staleness
13      évolué     evolved
14   évolution development
15    farineux      floury
16      finale       final
17   fraîcheur   freshness
18       fruit       fruit
19       fumée       smoke
20    généreux    generous
21      humide         wet
22      limite       limit
23     matière    material
24         mou        soft
25        neuf         new
26        noir       black
27    nonboisé    unwooded
28 particulier  particular
29        plat        flat
30   réduction   reduction
31        rond       round
32         sec         dry
33      souple      supple
34      sucrée       sweet
35   sucrosité   sweetness
36      toasté     toasted
37     vanillé    vanillin
38         vin        wine

 

To join French coordinates and their translation:

Coord.Fr.Fig4 <- data.frame(res.mfact.23$freq.sup$coord[sel.12.BRGW.Fr,], lang="Fr")
Coord.Fr.Fig4 <- merge(Coord.Fr.Fig4, df.WTR.Fr, by.x=0, by.y="orig")
Coord.Fr.Fig4[,c(1:5,9,10)]
     Row.names       Dim.1        Dim.2        Dim.3       Dim.4 lang      transl
1       aspect  0.01597913 -0.853134728  0.009069728  0.03228269   Fr      aspect
2    asséchant -0.67338104 -0.803561875 -0.101463172  0.27194795   Fr      drying
3         beau  0.18464237  0.693693657 -0.094493630 -0.34464145   Fr   beautiful
4         bois  1.30114701  0.051069203 -0.483807494  0.08205348   Fr        wood
5        boisé  0.66641435 -0.480026128 -0.044177786  0.10843598   Fr       woody
6       carton -0.30523593 -1.593741775  0.601692209 -0.23240807   Fr   cardboard
7    charpenté  1.24802969 -0.336910906 -0.255218575  0.22412317   Fr  structured
8         cuit  0.01597913 -0.853134728  0.009069728  0.03228269   Fr      cooked
9      curieux -0.30523593 -1.593741775  0.601692209 -0.23240807   Fr     curious
10      dominé  1.48972280 -0.132100595 -0.425383218  0.44185159   Fr   dominated
11      étable -0.30523593 -1.593741775  0.601692209 -0.23240807   Fr      stable
12       évent -0.92317035  0.072908887 -0.754317378  0.28753767   Fr   staleness
13      évolué  0.22963518 -1.193102877  0.338674359  0.03142973   Fr     evolved
14   évolution -0.01757719  0.724909260 -0.116715947 -0.00354856   Fr development
15    farineux -0.74236722 -0.059917941 -0.540802652 -0.20512605   Fr      floury
16      finale  1.23519276 -0.323182362 -0.272182884  0.14037764   Fr       final
17   fraîcheur -0.60089901  0.385991015  0.172514233  0.19735824   Fr   freshness
18       fruit -0.47749854  0.355953911 -0.027557246  0.06103203   Fr       fruit
19       fumée -0.30523593 -1.593741775  0.601692209 -0.23240807   Fr       smoke
20    généreux  1.58489551 -0.002238351 -0.544394158  0.38322473   Fr    generous
21      humide -0.30523593 -1.593741775  0.601692209 -0.23240807   Fr         wet
22      limite -0.30523593 -1.593741775  0.601692209 -0.23240807   Fr       limit
23     matière  1.58489551 -0.002238351 -0.544394158  0.38322473   Fr    material
24         mou -0.74236722 -0.059917941 -0.540802652 -0.20512605   Fr        soft
25        neuf  1.58489551 -0.002238351 -0.544394158  0.38322473   Fr         new
26        noir -0.51200080  0.979784095  0.588623369  0.08993399   Fr       black
27    nonboisé -0.68346651  0.164631867  0.048985206  0.30313197   Fr    unwooded
28 particulier -0.30523593 -1.593741775  0.601692209 -0.23240807   Fr  particular
29        plat -0.74236722 -0.059917941 -0.540802652 -0.20512605   Fr        flat
30   réduction -0.74236722 -0.059917941 -0.540802652 -0.20512605   Fr   reduction
31        rond -0.51200080  0.979784095  0.588623369  0.08993399   Fr       round
32         sec -0.88066723  0.010392073 -0.646368809  0.11574179   Fr         dry
33      souple -0.03439260  0.902010962  0.328552340 -0.57750861   Fr      supple
34      sucrée  1.58489551 -0.002238351 -0.544394158  0.38322473   Fr       sweet
35   sucrosité  0.34183745 -0.534850990 -0.070969914 -0.21484109   Fr   sweetness
36      toasté  0.29012704 -1.118934073  0.300860299 -0.16743876   Fr     toasted
37     vanillé  0.70680948 -0.354176022 -0.232543146 -0.06772137   Fr    vanillin
38         vin  0.32738937 -0.090612082  0.085744578  0.12380635   Fr        wine

 

30 characteristic Catalan words for the plane (1,2)

sel.12.BRGW.Cat <- which((res.mfact.23$freq.sup$cos2[c(136:230),1]>0.5)|(res.mfact.23$freq.sup$cos2[c(136:230),2] > 0.5))
sel.12.BRGW.Cat
         alt         bota         cafè       cartró        cedre       cítric    claudolor          cos 
           7           13           16           18           20           22           23           28 
    especiat       floral     formatge     fruitsec          fum        fusta       gerani     glicerol 
          33           37           39           41           42           44           45           46 
       greix         iode     liniment malaqualitat     mantegós       marcat       neopre   regalèssia 
          47           49           52           55           56           57           63           78 
      secant        sutja         taní       torrat     vainilla     xocolata 
          81           86           87           90           92           95 

 

cat(length(sel.12.BRGW.Cat))
30
Words12.BRGW.Cat <- data.frame(posit=as.vector(sel.12.BRGW.Cat), wordF4=names(sel.12.BRGW.Cat), lang="Cat")
Words12.BRGW.Cat
   posit       wordF4 lang
1      7          alt  Cat
2     13         bota  Cat
3     16         cafè  Cat
4     18       cartró  Cat
5     20        cedre  Cat
6     22       cítric  Cat
7     23    claudolor  Cat
8     28          cos  Cat
9     33     especiat  Cat
10    37       floral  Cat
11    39     formatge  Cat
12    41     fruitsec  Cat
13    42          fum  Cat
14    44        fusta  Cat
15    45       gerani  Cat
16    46     glicerol  Cat
17    47        greix  Cat
18    49         iode  Cat
19    52     liniment  Cat
20    55 malaqualitat  Cat
21    56     mantegós  Cat
22    57       marcat  Cat
23    63       neopre  Cat
24    78   regalèssia  Cat
25    81       secant  Cat
26    86        sutja  Cat
27    87         taní  Cat
28    90       torrat  Cat
29    92     vainilla  Cat
30    95     xocolata  Cat

 

French translation

df.WTR.Cat <- data.frame(orig= "alt", transl="high")
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "bota", transl="barrel") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "cafè", transl="coffee") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "cartró", transl="cardboard") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "cedre", transl="cedar") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "cítric", transl="citrus") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "claudolor", transl="clove") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "cos", transl="full_bodied") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "especiat", transl="spicy") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "floral.1", transl="floral") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "formatge", transl="cheese") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "fruitsec", transl="nuts") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "fum", transl="smoke") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "fusta", transl="wood") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "gerani", transl="geranium") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "glicerol", transl="glycerol") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "greix", transl="fat") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "iode", transl="iodine") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "liniment", transl="liniment") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "malaqualitat", transl="poorquality") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "mantegós", transl="buttered") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "marcat", transl="marked") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "neopre", transl="neoprene") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "regalèssia", transl="licorice") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "secant", transl="drying") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "sutja", transl="soot") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "taní", transl="tannin") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "torrat", transl="toasted") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "vainilla", transl="vanilla") )
df.WTR.Cat <- rbind(df.WTR.Cat , data.frame(orig= "xocolata", transl="chocolate") )
dim(df.WTR.Cat)
30  2
df.WTR.Cat
           orig      transl
1           alt        high
2          bota      barrel
3          cafè      coffee
4        cartró   cardboard
5         cedre       cedar
6        cítric      citrus
7     claudolor       clove
8           cos full_bodied
9      especiat       spicy
10     floral.1      floral
11     formatge      cheese
12     fruitsec        nuts
13          fum       smoke
14        fusta        wood
15       gerani    geranium
16     glicerol    glycerol
17        greix         fat
18         iode      iodine
19     liniment    liniment
20 malaqualitat poorquality
21     mantegós    buttered
22       marcat      marked
23       neopre    neoprene
24   regalèssia    licorice
25       secant      drying
26        sutja        soot
27         taní      tannin
28       torrat     toasted
29     vainilla     vanilla
30     xocolata   chocolate

To join Catalan coordinates and their translation. 29 characteristic Catalan words for the plane (1,2):

sel.12.BRGW.Cat
         alt         bota         cafè       cartró        cedre       cítric    claudolor          cos 
           7           13           16           18           20           22           23           28 
    especiat       floral     formatge     fruitsec          fum        fusta       gerani     glicerol 
          33           37           39           41           42           44           45           46 
       greix         iode     liniment malaqualitat     mantegós       marcat       neopre   regalèssia 
          47           49           52           55           56           57           63           78 
      secant        sutja         taní       torrat     vainilla     xocolata 
          81           86           87           90           92           95 
Coord.Cat.Fig4 <- data.frame(res.mfact.23$freq.sup$coord[135+sel.12.BRGW.Cat,], lang="Cat")
Coord.Cat.Fig4 <- merge(Coord.Cat.Fig4, df.WTR.Cat, by.x=0, by.y="orig")
Coord.Cat.Fig4[,c(1:5,9,10)]
      Row.names        Dim.1       Dim.2        Dim.3        Dim.4 lang      transl
1           alt  1.594762412  0.03621157 -0.422972137  0.355937434  Cat        high
2          bota  1.594762412  0.03621157 -0.422972137  0.355937434  Cat      barrel
3          cafè  1.499589705 -0.09365067 -0.303961198  0.414564298  Cat      coffee
4        cartró -0.295369026 -1.55529185  0.723114229 -0.259695358  Cat   cardboard
5         cedre -0.295369026 -1.55529185  0.723114229 -0.259695358  Cat       cedar
6        cítric  0.239502079 -1.15465295  0.460096380  0.004142437  Cat      citrus
7     claudolor  1.170024478  0.33762005 -0.480315219 -0.334345362  Cat       clove
8           cos  0.862357705 -0.09456111  0.430474899  0.271621921  Cat full_bodied
9      especiat  1.197868440  0.19942101 -0.397440039 -0.161112684  Cat       spicy
10     formatge -0.295369026 -1.55529185  0.723114229 -0.259695358  Cat      cheese
11     fruitsec  0.239502079 -1.15465295  0.460096380  0.004142437  Cat        nuts
12          fum  0.812995160  0.31113997 -0.555916604 -0.265965432  Cat       smoke
13        fusta  1.217970407  0.32673601 -0.174644124  0.071150592  Cat        wood
14       gerani  0.933272460  0.30822729 -0.380418640 -0.505812763  Cat    geranium
15     glicerol  0.933272460  0.30822729 -0.380418640 -0.505812763  Cat    glycerol
16        greix  0.008356135 -0.56804162 -0.111703813  0.213163418  Cat         fat
17         iode -0.295369026 -1.55529185  0.723114229 -0.259695358  Cat      iodine
18     liniment  0.933272460  0.30822729 -0.380418640 -0.505812763  Cat    liniment
19 malaqualitat -0.295369026 -1.55529185  0.723114229 -0.259695358  Cat poorquality
20     mantegós -0.295369026 -1.55529185  0.723114229 -0.259695358  Cat    buttered
21       marcat  1.594762412  0.03621157 -0.422972137  0.355937434  Cat      marked
22       neopre -0.295369026 -1.55529185  0.723114229 -0.259695358  Cat    neoprene
23   regalèssia  0.623473033 -0.37652219 -0.170410215  0.325183556  Cat    licorice
24       secant -0.536766429 -0.94764429  0.181153893  0.056783121  Cat      drying
25        sutja  1.594762412  0.03621157 -0.422972137  0.355937434  Cat        soot
26         taní  0.649696693 -0.75954014  0.150071046  0.048121038  Cat      tannin
27       torrat  1.142158500 -0.24380276 -0.300656637  0.203027830  Cat     toasted
28     vainilla -0.046753466 -0.52902043 -0.006036952 -0.130748840  Cat     vanilla
29     xocolata -0.129192655  0.65173127 -0.167899570 -0.023157824  Cat   chocolate

 

Coord.Fig4 <- rbind(Coord.Fr.Fig4, Coord.Cat.Fig4)

 

To build Figure 4:

ax1 <-1 ; ax2 <-2
labx <- paste0("Dim 1 (", round(res.mfact.23$eig[ax1,2],1),"%)" )
laby <- paste0("Dim 2 (", round(res.mfact.23$eig[ax2,2],1),"%)" )
font.type.FRCat <- c("bold", "bold.italic")
color.type.FRCat <- c("Green", "Blue")
col.margin = c("black", "red")
Coord.Fig4$lang <- as.factor(Coord.Fig4$lang)
set.seed(1234)
Figure4 <- ggplot(Coord.Fig4)+
theme_light() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+
xlab(labx)+ ylab(laby) + coord_fixed()+
geom_hline(yintercept=0, linetype="dashed", color = "grey")+
geom_vline(xintercept=0, linetype="dashed", color = "grey")+
geom_text_repel(size=5, fontface = font.type.FRCat[Coord.Fig4$lang], max.overlaps=100,
box.padding = unit(0.35, "lines"),
aes(x=Dim.1, y=Dim.2, label = transl, color=lang))+
theme( axis.text.x = element_text(size=rel(1.6)))+
theme( axis.text.y = element_text(size=rel(1.6)))+
labs(x=labx)+labs(y=laby)+
theme(axis.title.x= element_text(size=17, face="bold"))+
theme(axis.title.y= element_text(size=17, face="bold"))+
theme(plot.margin = grid::unit(c(t=5,r= 2,b=5, l=2), "mm"))+
scale_color_manual(name="Language",
labels=c("Catalan","French"),
values = setNames(col.margin, levels(Coord.Fig4$lang))) +
theme(axis.title.x = element_text(margin=margin(t=10))) +
theme(panel.border = element_rect(colour = "black", fill=NA, linewidth=1)) +
theme(legend.position = "none")+
labs(title = "Words originally in <b style='color:#FF0000'>**_French_**</b> and **Catalan**")+
theme(plot.title = element_markdown(lineheight = 1.1, hjust=1, size=20))+
ylim(-1.9, 1.1)+
ggtitle("Figure 4. The best-represented global words on either of the first two axes")

 

To plot Figure 4:

set.seed(1234)
Figure4